
Spare Time Teaching’s
2013/2014 Note Collection

Kristoffer Andersen
Christian Clausen

Mikkel Kringelbach
Richard Möhn

Mathias Pedersen

Edited by Christian Clausen

1

Foreword

This is the first official collection of notes from Spare Time Teaching. The
people who have contributed to this collection were either bachelors or mas-
ters students, and every subject presented has been studied and prepared
during the author’s spare time.

The topics in this edition fall mainly within the field of programming lan-
guages, more specifically: Lambda Calculus, type theory (dependent types,
type inference, and type classes), functional and logic programming, seman-
tics, abstract interpretation, and low level programming (assembly and bit
manipulation).

This edition contains notes from all the talks that were presented with
corresponding pdf, therefore there may be more notes, source code, and other
material avalible on Spare Time Teaching’s website (daimi.au.dk/~christia).
The notes are ordered with respect to the order they were presented in.

The content of this collection is not to be considered as research, but
rather as experience reports, tutorials, or supplementing material for presen-
tations.

The contributing authors to this edition are:

• Kristoffer Andersen

• Christian Clausen

• Mikkel Kringelbach

• Richard Möhn

• Mathias Pedersen

With special thanks to Kent Grigo for his corrections, comments, and sug-
gestions for this note collection.

2

Contents

1. Intuition to Lambda Calculus

2. Untyped Lambda Calculus

3. Curry-Howard Correspondence Hands-on

4. Simply Typed Lambda Calculus

5. System F

6. Hindley-Milner Type Inference

7. Dependently Typed Lambda Calculus

8. Folding Data

9. Semantics Overview

10. Assembling Assembly

11. Bits and Pieces

12. Introduction to Type Classes

13. Combinator Gymnastics

14. Introduction to Abstract Interpretation

15. Logic Programming

3

Intuition to Lambda Calculus

Christian Clausen

December 30, 2013

1 Grammar

t ::= v

| λ v . t

| t t

2 Reduction rules

2.1 Metarules

" " means "syntax for"

x y z (x y) z

λ x. t1 t2 λx. (t1 t2)

λ x y . t λ x . λ y . t

t[t’/x] is substitution

2.2 α Renaming

λ x . t −→α λ y . t[y/x]

2.3 η Expansion

f −→η λ x . f x

1

2.4 β Reduction

(λ x . t1) t2 −→β t1[t2/x]

3 The Identity Function

3.1 Function

id ≡ λ x . x

3.2 Evaluation

id id = (λ x . x) (λ x . x) −→α (λ x . x) (λ y . y)

−→β x[(λ y . y)/x] = λ y . y = id

id id = (λ x . x) id

−→β x[id/x] = id

4 Some Terminology

Abstraction, normalization, free variable, name capture, combinator, weak-
head normal form, closed terms, ...

5 Combinators

I ≡ λ x . x

K ≡ λ x y . x

B ≡ λ x y z . x (y z)

S ≡ λ f g x . f x (g x)

K∗ ≡ λ x y . y

2

K I � K∗

K∗ I � I

S K I � I

S K K � I

S (K S) K � B

X = λ x . x S K

X X � S K (K K)

X (X X) � S K

X (X (X X)) � K

X (X (X (X X))) � S

6 Booleans

6.1 Definition

T ≡ λ t f . t

F ≡ λ t f . f

6.2 Not

not ≡ λ b . λ t f . b f t

not ≡ λ b . b (λ t f . f) (λ t f . t)

not ≡ λ b . b F T

¬a not a

6.3 And

and ≡ λ b1 b2 . b1 b2 F

a & b and a b

3

6.4 Exercise: Or

or ≡ λ b1 b2 . b1 T b2

a | b and a b

7 Numbers

7.1 Definition

nat ::= 0

| Succ nat

0 ≡ λ fs vz . vz
mk_succ ≡ λ n . λ fs vz . fs (n fs vz)

succ ≡ mk_succ

Church numerals

0 ≡ λ s z . z

1 ≡ λ s z . s z

2 ≡ λ s z . s (s z)

...

7.2 Is zero?

is_zero? ≡ λ n . n (λ α . F) T

7.3 Plus

plus ≡ λ m n . m succ n

a + b plus a b

4

7.4 Times

times ≡ λ m n . m (plus n) 0

a * b times a b

8 Pairs

8.1 Definition

pair ::= P * *

mk_pair ≡ λ a b . λ fp . fp a b

<a, b> mk_pair a b

π1 ≡ λ p . p (λ a b . a)

π2 ≡ λ p . p (λ a b . b)

8.2 Swap

swap ≡ λ p . <π2 p, π1 p>

swap ≡ λ p . mk_pair (π2 p) (π1 p)

8.3 Sliding Window

<a, b>
f7−→ <b, a + b>

fib ≡ λ n . π1 (n f <0, 1>)

<a, b>
f7−→ <succ a, a * b>

fac ≡ λ n . π2 (n f <1, 1>)

<a, b>
f7−→ <b, a>

is_even? ≡ λ n . π1 (n f <T, F>)

5

9 Lists

9.1 Definition

list ::= Nil

| Cons * list

mk_cons ≡ λ hd tl . λ fc vn . fc hd (tl fc vn)

hd :: tl mk_cons hd tl

nil ≡ λ fc vn . vn

9.2 Sum

sum_list ≡ λ xs . xs plus 0

10 Trees

10.1 Definition

tree ::= Leaf *

| Node tree tree

mk_node ≡ λ t1 t2 . λ fn fl . fn (t1 fn fl) (t2 fn fl)

mk_leaf ≡ λ n . λ fn fl . fl n

10.2 Sum

sum_tree ≡ λ t . t plus id

11 Unbounded Iteration

ω ≡ λ x . x x

Ω ≡ ω ω

6

11.1 But Y

11.1.1 Curry

Wf = λ x . f (x x)

YC ≡λ f . Wf Wf

11.1.2 Turing

A ≡ λ x y . y (x x y)

YT ≡ A A

11.2 Example: Streams

N̂ ≡ λ self n . <n, self (succ n)>

N ≡ Y N̂ 0

ẑip ≡ λ self xst yst . <π1 xst , self yst (π2 xst)>

zip ≡ Y ẑip

7

Day 1
Untyped Lambda Calculus

Christian Clausen

January 31, 2014

1 Syntax

t ::= x Var(new)

| lam x. t Abs(new)

| t t App(new)

x y z (x y) z
lam x. t1 t2 lam x. (t1 t2)
lam x y. t lam x. lam y. t
let x = t1 in t2 (lam x. t2) t1

2 Evaluation

2.1 Version 1

x ⇓ xVar
t ⇓ t′

λx.t ⇓ λx.t′Abs

t1 ⇓ λx.t t2 ⇓ t′2 t[t′2/x] ⇓ t′
t1 t2 ⇓ t′

App1
t1 ⇓ t′1 t2 ⇓ t′2
t1 t2 ⇓ t′1 t′2

App2

1

2.2 Version 2
σ(x) = t (σ, t) ⇓ t′

(σ, x) ⇓ t′ Var
(σ[x 7→ x], t) ⇓ t′
(σ, λx.t) ⇓ λx.t′ Abs

(σ, t1) ⇓ λx.t (σ, t2) ⇓ t′2 (σ[x 7→ t′2], t) ⇓ t′
(σ, t1 t2) ⇓ t′

App1
(σ, t1) ⇓ t′1 (σ, t2) ⇓ t′2

(σ, t1 t2) ⇓ t′1 t′2
App2

σ(x) has to be unique.

3 Typing rules

There are no types in the untyped lambda calculus.

4 Examples

T ≡ lam t f. t
F ≡ lam t f. f
and ≡ lam b1 b2. b1 b2 F
and T T ⇓ T
and F T ⇓ F
T T ⇓ lam f. T

5 Proofs

As there are no types, there are no proofs.

6 Variations

• Thunks.

• Call by name.

• Allowing unbound variables.

2

• De Bruijn indices. Representing variables as the number of lambdas
since it was bound; λx.x would be λ0, λxy.x would be λλ1.

Now we have a 3-step model for substitution without an environment.
For (λx.t1) t2, we have:

1. Find the (free) occurences of x in t1.

2. Remove the λ and subtract 1 from all the free variables in t1.

3. Put t2 in the places found in (1), and add 1 to the free variables
of t2 each time you encounter a λ.

3

Curry-Howard Correspondance

Christian Clausen

February 6, 2014

1 Propositional Logic

1.1 Hypothesis

We assume the axiom:

Γ1, A,Γ2 ` A
Hyp

Which in words means that if A is already one of our assumptions, we may use
it.

1.2 Top

Γ ` >>i

1.3 Bottom

Γ ` ⊥
Γ ` A⊥e

1.4 Conjunction

Γ ` A Γ ` B
Γ ` A ∧B ∧ i

Γ ` A ∧B
Γ ` A ∧ e1

Γ ` A ∧B
Γ ` B ∧ e2

1

1.5 Disjunction

Γ ` A
Γ ` A ∨B ∨ i1

Γ ` B
Γ ` A ∨B ∨ i2

Γ ` A ∨B Γ, A ` C Γ, B ` C
Γ ` C ∨ e

1.6 Implication

Γ, A ` B
Γ ` A→ B

→ i

Γ ` A→ B Γ ` A
Γ ` B → e

1.7 Syntactic Sugar

Not:
¬A ≡ A→ ⊥

Bi-implication:
A↔ B ≡ (A→ B) ∧ (B → A)

2 Propositional Logic as Programs

2.1 Hypothesis

Here Hyp would be a variable access.

2.2 Top

Γ ` () : >>i

2.3 Bottom

Γ `M : ⊥
Γ ` raise (Contradiction M) : A

⊥e

2

2.4 Conjunction

Γ ` M : A Γ ` N : B

Γ ` (M, N) : A ∧B ∧ i

Γ ` M : A ∧B
Γ ` let (ha, _) = M in ha : A

∧ e1

Γ ` M : A ∧B
Γ ` let (_, hb) = M in hb : B

∧ e2

2.5 Disjunction

Γ ` M : A

Γ ` Left M : A ∨B ∨ i1

Γ ` M : B

Γ ` Right M : A ∨B ∨ i2

Γ ` M : A ∨B Γ,ha : A ` L : C Γ,hb : B ` R : C

Γ ` match M with Left ha -> L | Right hb -> R : C
∨ e

2.6 Implication

Γ,ha : A ` M : B

Γ ` fun ha -> M : A→ B
→ i

Γ ` M : A→ B Γ ` N : A

Γ ` M N : B
→ e

3 Example

We want to prove: A ∨B → ¬A→ B

3.1 As a Proof Tree

A ∨B,¬A ` A ∨BHyp
¬A,A ` A→ ⊥Hyp ¬A,A ` AHyp

¬A,A ` ⊥ → e

¬A,A ` B ⊥e ¬A,B ` BHyp

A ∨B,¬A ` B
A ∨B ` ¬A→ B

· ` A ∨B → ¬A→ B
→ i

→ i

∨e

Note: we have removed A∨B after the ∨e to save space, and because we could
always re-introduce it using ∨i1 or ∨i2.

3

3.2 As a Program

fun h1 -> (* → i *)
fun hna -> (* → i *)
match h1 with (* ∨e *)
| Left ha -> raise (Contradiction (* ⊥e *)

(hna ha)) (* → e *)
| Right hb -> hb

The places where we use h1, hna, ha, or hb correspond to a use of the Hyp-
axiom in the proof.

If we type this in OCaml (after open Prop) we get the type signature:

(’a, ’b) disj -> (’a -> bot) -> ’b

which translates to:
α ∨ β → ¬α→ β

4

Day 2
Simply Typed Lambda Calculus

Christian Clausen

December 30, 2013

1 Syntax

τ ::= A Atom(new)

| τ -> τ Arrow(new)

t ::= x Var
| lam x. t Abs
| t t App
| t : τ Ann(new)

| lam x : τ. t AnnAbs(new)

lam x y : τ. t lam x : τ. lam y : τ. t
Lemma: τ Proof: t t : τ

2 Evaluation

x ⇓ xVar
t ⇓ t′

λx.t ⇓ λx.t′Abs

t1 ⇓ λx.t t2 ⇓ t′2 t[t′2/x] ⇓ t′
t1 t2 ⇓ t′

App1
t1 ⇓ t′1 t2 ⇓ t′2
t1 t2 ⇓ t′1 t′2

App2

t ⇓ t′
t : τ ⇓ t′Ann

t ⇓ t′
λx : τ.t ⇓ λx.t′AnnAbs

1

3 Typing rules

3.1 Type Well-formedness

Γ `wf A
Atom

Γ `wf τ1 Γ `wf τ2
Γ `wf τ1 → τ2

Arrow

3.2 Inferable Types

Γ(x) = τ

Γ ` x ↑ τVar
Γ ` t1 ↑ τ1 → τ2 Γ ` t2 ↓ τ1

Γ ` t1 t2 ↑ τ2
App

Γ `wf τ Γ ` t ↓ τ
Γ ` t : τ ↑ τ Ann

Γ `wf τ1 Γ, x : τ ` t ↑ τ2
Γ ` λx : τ1.t ↑ τ1 → τ2

AnnAbs

3.3 Checkable Types

Γ, x : τ1 ` t ↓ τ2
Γ ` λx.t ↓ τ1 → τ2

Abs
Γ ` t ↑ τ
Γ ` t ↓ τCheck

4 Examples

idA ≡ lam x : A. x
idA→A ≡ lam x : A -> A. x

idA ⇓ idA

idA ↑ A → A

idA n ⇓ n
idA n ↑ A

idA→A idA ⇓ idA

idA→A idA ↑ A → A

idA idA ⇓ idA

idA idA ↑

idA→A idA→A ⇓ idA→A

2

idA→A idA→A ↑

5 Proofs

Lemma:
A -> B -> A

Proof:
lam a : A. lam b : B. a

Lemma:
(A -> B) -> (A -> B)

Proof:
lam f : A -> B. lam a : A. f a

6 Variations

• Fixed set of atom types.

• Extendable set of atom types.

• Infering the set of atom types.

• Support for “holes”, where it will tell you what the current type envi-
ronment is.

• Support for free variables, using this rule:

Γ ` n ↓ τFree Var

3

Day 3
System F

Christian Clausen

September 30, 2014

1 Syntax

τ ::= A Atom
| τ -> τ Arrow
| α TypeVar(new)

| forall α, τ Forall(new)

t ::= x Var
| lam x. t Abs
| t t App
| t : τ Ann
| lam x : τ. t AnnAbs
| Lam α. t TypeAbs(new)

| t[τ] TypeApp(new)

1

2 Evaluation

x ⇓ xVar
t ⇓ t′

λx.t ⇓ λx.t′Abs

t1 ⇓ λx.t t2 ⇓ t′2 t[t′2/x] ⇓ t′
t1 t2 ⇓ t′

App1
t1 ⇓ t′1 t2 ⇓ t′2
t1 t2 ⇓ t′1 t′2

App2

t ⇓ t′
t : τ ⇓ t′Ann

t ⇓ t′
λx : τ.t ⇓ λx.t′AnnAbs

t ⇓ t′
Λα, t ⇓ t′TypeAbs

t ⇓ t′
t[τ] ⇓ t′TypeApp

3 Typing rules

3.1 Type Well-formedness

Γ `wf A
Atom

Γ `wf τ1 Γ `wf τ2
Γ `wf τ1 → τ2

Arrow

Γ(α) = ∗
Γ `wf α

TypeVar
Γ, α : ∗ `wf τ
Γ `wf ∀α, τ

Forall

3.2 Inferable Types

Γ(x) = τ

Γ ` x ↑ τVar
Γ ` t1 ↑ τ1 → τ2 Γ ` t2 ↓ τ1

Γ ` t1 t2 ↑ τ2
App

Γ `wf τ Γ ` t ↓ τ
Γ ` t : τ ↑ τ Ann

Γ `wf τ1 Γ, x : τ ` t ↑ τ2
Γ ` λx : τ1.t ↑ τ1 → τ2

AnnAbs

Γ, α : ∗ ` t ↑ τ
Γ ` Λα, t ↑ ∀α, τTypeAbs

Γ `wf τ Γ ` t ↑ ∀α, τ ′
Γ ` t[τ] ↑ τ ′[τ/α]

TypeApp

3.3 Checkable Types

Γ, x : τ1 ` t ↓ τ2
Γ ` λx.t ↓ τ1 → τ2

Abs
Γ ` t ↑ τ
Γ ` t ↓ τCheck

2

4 Examples

idα ≡ Lam α. lam x : α. x

idα ⇓ idα
idα ↑ ∀α, α→ α

idα [A] n ⇓ n
idα [A] n ↑ A

idα [A] idα ⇓ idα
idα [A] idα ↑

idα [forall α, α -> α] idα ⇓ idα
idα [forall α, α -> α] idα ↑ ∀α, α→ α

5 Proofs

Lemma:
forall α β, α -> β -> α

Proof:
Lam α β. lam a : α. lam b : β. a

Lemma:
forall α β, (α -> β) -> (α -> β)

Proof:
Lam α β. lam f : α -> β. lam a : α. f a

6 Variations

• Implicite type application, using this rule:

Γ ` t1 ↑ ∀α, τ1 Γ ` t2 ↑ τ2
Γ ` t1 t2 ↑ τ1[τ2/α]

ImplTypeApp

• Hindley-Milner type inference

3

Hindley-Milner Type Inference

Kristoffer Andersen
kja@cs.au.dk

Christian Clausen
christia@cs.au.dk

March, 2014

1 Introduction

This brief note accompanies a hands-on session on HM-style type inference
conducted through the Spare Time Teaching initiative in March, 2014. It is
not intended to be self contained. For self-study we refer to the articles in
the list of references, and from then on encourage further exploration; the
literature behind a whole culture of programming and technology is truly
more exhaustive than we could ever hope to represent here.

This note details the study of an object language of study along with a
syntax of its types. The following and final section presents AlgorithmW .

2 The Language

The object language is the first order Lambda Calculus, presented in Fig-
ure 1—with implicit typing—along with a language of types featuring second
order quantification, necessary for polymorphic functions. This is presented
in Figure 2

t ::= x variable
| t t application
| λx.t abstraction
| let x = t in t let-binding

Figure 1: Simply typed lambda calculus with let-bindings

τ ::= α type variable
| atomi atomic types
| τ → τ function types
| ∀α.τ type abstraction

Figure 2: Simply typed lambda calculus with let-bindings

1

3 The Algorithm

Algorithm W was first presented by Damas and Milner in 1982, a functional
programming twin to the work done by Hindley a decade earlier; the type
systems using these ideas are also sometimes triple-barelled, as in Hindley-
Milner-Damas.

The presentation here is taken from Heeren, Haage, & Swierstra who did
an excellent and very readable summary in 2002, and is shown in Figure 3.
Proofs of soundness and completeness are to be found in the original article.

W :: TypeEnvironment× Expression→ Substitution× Type
W(Γ, x) = ([], instantiate(σ)), where (x : σ) ∈ Γ

W(Γ, λx.t) = let (S1, τ1) = W(Γ \ x∪ {x : β}, t), fresh β
in (S1,S1β→ τ1)

W(Γ, t1 t2) = let (S1, τ1) = W(Γ, t1)
(S2, τ2) = W(S1Γ, t2)
S3 = unify(S2τ1, τ2 → β), fresh β

in (S3 ◦ S2 ◦ S1,S3β)

W(Γ, let x = t1 in t2) = let (S1, τ1) = W(Γ, t1)
(S2, τ2) = W(S1Γ \ x∪ {x : generalize(S1Γ, τ1)}, t2)

in (S2 ◦ S1, τ2)

Figure 3: AlgorithmW

The algorithm makes use of three auxilliary functions, along with the op-
erations on substitutions and environments. Instantiate takes a polymorphic
type and instantiates all quantified variables with fresh type variables. Gener-
alize takes a type and universally quantifies all free variables in that type.

Finally, unify finds a substitution that equates two types under that substi-
tution. How exactly to do this can be found in Knight’s survey from 1989, but
there are a range of classical results.

4 Recommended Exercises

Implement the algorithm in your favourite functional language!
This algorithm is very extensible, witnessed by the multitude of types

available in OCaml. Particularly all of the simple types are good candidates
for experimentation; here we propose a few:

1. Atom types;

(a) unit, with ()

(b) bool, with true, false, if t1 then t2 else t3

2

2. Pair types, τ× τ with corresponding introduction and elimination forms:
〈t1, t2〉, π0 and π1.

3. A fixpoint operator: �x f x.t

4. Sum types: τ + τ, inl, inr, case t1 of | inl x -> t2 | inr x -> t3

5 References

Luis Damas and Robin Milner. 1982. Principal type-schemes for
functional programs. In Proceedings of the 9th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL
’82). ACM, New York, NY, USA, 207-212.

Bastian Heeren, Jurriaan Haaga and Doaitse Swierstra. 2002. Gen-
eralizing Hindley-Milner Type Inference Algorithms. Techical Re-
port. Utrecht University, Utrecht, The Netherlands.

Kevin Knight. 1989. Unification: A Multidisciplinary Survey.
ACM Computing Surveys.

3

Day 4
Dependant Types

Christian Clausen

December 30, 2013

1 Syntax

t ::= x Var
| lam x. t Abs
| t t App
| t : t Ann(changed)

| lam x : t. t AnnAbs(changed)

| ∗ Star(new)

| forall α : t, t Forall(changed)

τ -> τ forall _ : τ, τ
forall α, τ forall α : ∗, τ

1

2 Evaluation

x ⇓ xVar
t ⇓ t′

λx.t ⇓ λx.t′Abs

t1 ⇓ λx.t t2 ⇓ t′2 t[t′2/x] ⇓ t′
t1 t2 ⇓ t′

App1
t1 ⇓ t′1 t2 ⇓ t′2
t1 t2 ⇓ t′1 t′2

App2

t ⇓ t′
t : τ ⇓ t′Ann

t ⇓ t′
λx : τ.t ⇓ λx.t′AnnAbs

∗ ⇓ ∗Star
ρ1 ⇓ τ1 ρ2 ⇓ τ2

∀x : ρ1, ρ2 ⇓ ∀x : τ1, τ2
Forall

3 Typing rules

3.1 Type Well-formedness

Well formedness is much simpler here:

Γ `wf τ iff Γ ` τ ↓ ∗

Therefore, I have chosen to inline this into the following rules.

3.2 Inferable Types

Γ(x) = τ

Γ ` x ↑ τVar
Γ ` t1 ↑ ∀x : τ1, τ2 Γ ` t2 ↓ τ1 τ2[t2/x] ⇓ τ3

Γ ` t1 t2 ↑ τ3
App

Γ ` ρ ↓ ∗ ρ ⇓ τ Γ ` t ↓ τ
Γ ` t : ρ ↑ τ Ann

Γ ` ρ1 ↓ ∗ ρ1 ⇓ τ1 Γ, x : τ1 ` t ↑ τ2
Γ ` λx : ρ1.t ↑ ∀x : τ1, τ2

AnnAbs

Γ ` ∗ ↑ ∗Star
1 Γ ` ρ1 ↓ ∗ ρ1 ⇓ τ1 Γ, x : τ1 ` ρ2 ↓ ∗

Γ ` ∀x : ρ1, ρ2 ↑ ∗
Forall

3.3 Checkable Types

Γ, x : τ1 ` t ↓ τ2
Γ ` λx.t ↓ ∀x : τ1, τ2

Abs
Γ ` t ↑ τ
Γ ` t ↓ τCheck

2

4 Examples

idα ≡ lam α : ∗. lam x : α. x

idα ⇓ idα
idα ↑ ∀α, α→ α

idα A n ⇓ n
idα A n ↑ A

idα A idα ⇓ idα
idα A idα ↑

idα [forall α, α -> α] idα ⇓ idα
idα [forall α, α -> α] idα ↑ ∀α, α→ α

5 Proofs

lam eq : forall α, α -> α -> ∗.
lam eq_refl : forall α, forall x : α, eq α x x.
lam eq_ind : forall α,

forall m : (forall x y : α, eq α x y -> ∗),
(forall z : α, m z z (refl α z)) ->
forall x y : α, forall p : eq α x y, m x y p.

Lemma:
forall x y, eq x y -> eq y x

Proof:
[exercise for the reader]

Lemma:
forall f x y, eq x y -> eq (f x) (f y)

Proof:
[exercise for the reader]

Lemma:

3

forall P x y, eq x y -> P x -> P y
Proof:

[exercise for the reader]

6 Variations

If we look at some examples, we notice that we can emulate the (non-
dependent) inductive definition

type nat =
| Z : nat
| S : nat -> nat

by the following definitions

lam nat : ∗.
lam Z : nat.
lam S : nat -> nat.
lam nat_ind :

forall P : nat -> ∗,
P Z ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n.

Here is another example

type list (α : ∗) =
| nil : list α
| cons : α -> list α -> list α

can be emulated as

lam list : ∗ -> ∗.
lam nil : forall α, list α.
lam cons : forall α, α -> list α -> list α.
lam list_ind :

forall α, forall P : list α -> ∗,
P (nil α) ->
(forall hd : α, forall tl : list α,
P tl -> P (cons α hd tl)) ->

4

forall l : list α, P l.

these two examples should give an intuition into how we can extend our
language with non-dependent inductive definition.

For this to be really useful, you need to dynamically extend the interpreter
with the rules:

nat_ind P base ind Z ⇓ basenatZ
nat_ind P base ind n ⇓ rec

nat_ind P base ind (S n) ⇓ ind n recnatS
P ⇓ P ′ base ⇓ base′ ind ⇓ ind′

nat_ind P base ind n ⇓ nat_ind P ′ base′ ind′ n
nat

list_ind P base ind nil ⇓ baselistnil
list_ind P base ind n ⇓ rec

list_ind P base ind (cons a b) ⇓ ind a b reclistcons
P ⇓ P ′ base ⇓ base′ ind ⇓ ind′

list_ind P base ind ls ⇓ list_ind P ′ base′ ind′ ls
listcons

because then we can actually execute our programs.

6.1 Going Further

The previous section extends trivially to dependent types.

6.2 Going Even Further

Consider the code:

record pair (α β : ∗) =
{ fst : α ;

snd : β ; }

This can be expanded to:

type pair (α β : ∗) =
| construct_pair : α -> β -> pair α β

let fst α β (p : pair α β) =

5

pair_ind α β (lam _ . α) (lam x y . x) p in
let snd α β (p : pair α β) =

pair_ind α β (lam _ . β) (lam x y . y) p in

We could then support code like:

let swap α β (p : pair α β) =
{ p.snd ;

p.fst ; }

We could even support this:

let swap α β (p : pair α β) =
{ snd = p.fst ;

fst = p.snd ; }

By expanding it to:

let swap α β (p : pair α β) =
pair_construct (snd p) (fst p)

We could even go as far as:

let dup_fst α (p : pair α α) =
{ p with snd = p.fst }

Using everything that we have discussed we have a dependently typed lan-
guage, with an almost convenient notation for complex math. If we assume
notation for and (/\) and eq (=), we have:

let set α = α -> ∗ in
let set_in α (x : α) (G : set α) = G x in
let subset α (G H : set α) =

forall x, G x -> H x in
let union α (G H : set α) =

[exercise for the reader] in
let intersection α (G H : set α) =

[exercise for the reader] in

type exists α (P : α -> ∗) =
| ex_intro :

forall x, P x -> exists α P

6

record Group α (G : set α) (comp : α -> α -> α) (e : α) =
{ closed : forall a b,

set_in a G -> set_in b G ->
set_in (comp a b) G ;

assoc : forall a b c,
set_in a G -> set_in b G -> set_in c G ->
comp (comp a b) c = comp a (comp b c) ;

e_in_G : set_in e G ;
neutral_l : forall g, set_in g G -> comp e g = g ;
neutral_r : forall g, set_in g G -> comp g e = g ;
inverse_l : forall g, set_in g G -> exists α
(fun h => set_in h G /\ comp h g = e) ;

inverse_r : forall g, set_in g G -> exists α
(fun h => set_in h G /\ comp g h = e) ; }

Lemma e_unique: forall G comp e, Group G comp e ->
forall e’, G e’ ->
(forall g, G g -> comp e’ g = g) ->
(forall g, G g -> comp g e’ = g) ->
e = e’

Proof:
[exercise for the reader]

Happy proving!

7

Folding Data

Richard Möhn

2014-05-16

0. Outline

1-7 Lists

8-10 Natural Numbers

11 Aside

12-15 Andersrum

16 EXAMPLE

17 Conclusion

18,19 Bonus

1. What are folds for? Make something out of some data structure. Which
one? Let’s take the list. We already know there is a fold. How to make
it? Refer to [1].

2. What is a list?

List α ::= Nil

| Cons α (List α)

3. So, the fold:

foldList : ... → List α → γ

4. A closer look at the list:

List α : * (Lattice: [Val] - [Type] - * ← only one)

Nil : List α
Cons : α → List α

1

Want to make γ out of List α. Have to make it out of every occurence
of List α.

γ : *

e : γ
f : α → γ

Therefore:

foldList : (α → γ) → γ → List α → γ

Note: This is always the same procedure. Less hand-waving explana-
tions derived from category theory.

5. Have the ingredients. How the fold? In the natural way!

foldList f e Nil = e

foldList f e (Cons x xs) = f x (foldList f e xs)

Trace foldList f e (Cons x1 (Cons x2 (Cons x3 Nil))).

6. foldList applies f from right to left:

(((())))

[0, 1, 2, 3] e

What about left-associative functions? foldLeft! (Two ways to define
the fold on lists! Christian and Ratatouille.)

foldLeft e f Nil = e

foldLeft e f (Cons x xs) = foldLeft (f e x) f xs

...applies f from left to right.

e [0, 1, 2, 3]

(((())))

7. foldList in the editor. Defining and demonstrating functions:

- length (by induction - program calculation!)

- sum

8. Folds also on other data types: natural numbers!

2

Nat ::= Z

| S Nat

Nat : *

Z : Nat

S : Nat → Nat

foldNat : ... Nat → γ

γ : *

e : γ
f : γ → γ

Therefore:

foldNat : (γ → γ) → γ → γ

foldNat f e Z = e

foldNat f e (S n) = f (foldNat f e n)

Trace foldNat f e (S (S (S n))).

9. foldNat in the editor. Examples:

- plus

- fib

10. Compare the traces from (5) and (7). What we had last week in
lambda calculus!

- plus λ m n . m succ n

- fib λ n . Π1 (n f 〈0, 1〉) Even sliding window!

11. Can also define folds on non-recursive data structures like pairs. Later,
dear.

12. Folds structurally recursive. Terminate if data structure is finite. Take
always as many steps as the data structure. What about uncertain
things like Collatz’ conjecture? Evil direct recursion again?

No! Unfolds! Make something into a data structure instead of data
structure into something.

3

unfoldList : ... → γ → List α

13. How to define an unfold? Define an unconstructor first.

(And defining Either first:

Either α β ::= Left α
| Right β

uncoList Nil = Left "Nothing"

uncoList (Cons x xs) = Right (x, List xs)

uncoList : List α → Either String (α * List α)

Again, substitute List α with γ. (Can only grow the list piecewise from
the original data item.)

f : γ → Either String (α * γ)

And the unfold with it:

unfoldList : (γ → Either String (α * γ)) → γ → List α

14. Defining the unfold in the natural way:

unfoldList f s =

case f s of

Left _ -> []

Right (a, s’) -> a : (unfoldList f s’)

15. unfoldList in the editor. Show:

- collatz

16. Big example.

- Things in types that are not uppercase are polymorphic.

17. Conclusion:

- Here, folds for avoiding explicit recursion. Much more to it:

- Dependently typed folds.

- Can derive laws like fold fusion.

4

- Make algebraic manipulation of programs easier.

- Whole thing about program calculation. Drawing on category theory.
Funny names and symbols.

- What I wanted to show: useful thing for everyday programming.

18. Not so many exercises anymore:

• (application) Define the multiplication and factorial function as
folds.

• (application) Define the map function on lists as a fold.

• (application) Define the reverse function on lists as a fold.

• (application) Implement foldNat in Scheme and use it for writing
a function for exponentiating matrices. (The utility functions re-
quired for this shouldn’t use explicit recursion as well, of course.)

• (transfer, frolic) Derive the fold and the unfold on your favourite
kind of tree and play around with them.

• (transfer) Derive the folds on Pair ((a * b)) and Either. Which
well-known functions do you obtain? [1]

• (making connections) While looking at the fold on Pair with one
eye, look at what Mikkel said about pairs in the lambda calculus
talk with the other.

• (♥) Make unparseArith output nicely indented code.

• (♥) Can the compiler from Arith to list of BCIs written as an
unfold? If yes, do it. If no, prove it.

• (program calculation) Define a tail-recursive append as a fold.
(Hint: Use foldList f e = append as a specification and calculate
your way to the result without using the second parameter of
append.) [1, SPOILER!]

• (♥) Solve the challenges involving folds!

19. References:

1 Cezar Ionescu: Advanced Functional Programming. Freie Universitt
Berlin, 2013. (http://www.pik-potsdam.de/members/ionescu/advanced-
functional-programming, 2014-05-12)

5

2 Olivier Danvy: dProgSprog 2014, Lecture Notes for Week 18. (http://users-
cs.au.dk/danvy/dProgSprog/Lecture-notes/week-18.html, 2014-05-12)

3 Erik Meijer, Maarten Fokkinga, Ross Paterson: Functional Program-
ming with Bananas, Lenses, Envelopes and Barbed Wire. In: Pro-
ceedings of the 5th ACM conference on Functional programming lan-
guages and computer architecture, Springer-Verlag New York, 1991,
Pages 124-144

4 Richard Bird, Oege de Moor: Algebra of Programming. Prentice
Hall Europe, 1996

6

Semantics Overview

Christian Clausen
christia@cs.au.dk

May 23, 2014

Semantics are used for several different purposes, the most common are:
to give meaning to (or prove properties about) programs, and to prove proper-
ties about languages. The definition of a semantics is: a set of constructions,
and a set of inference rules on these constructions. Coincidentally, this is
also the definition of a logic, thus a semantics is also a logic, and vice versa.

I have chosen to keep the defined languages as similar as possible, so
that the semantics will be easier to compare. By the same argument, I have
generally chosen very small (but Turing complete1) languages.

Thanks to Kristoffer Andersen, for comments and ideas for this presen-
tation.

Disclaimer There is so much material about semantics out there, and not
all of it agrees on the names and categories, this is my view. Many of them
are also very closely related, and some even express the exact same language.

1for the dynamic part anyway

1

1 Operational Semantics aka

Dynamic aka Execution

1.1 Big-step aka Natural

Grammar:

t ::= x | λx. t | t t

Semantics:

x ⇓ x
t ⇓ t′

λx. t ⇓ λx. t′

t1 ⇓ λx. t′1 t2 ⇓ t′2 t′1[t2/x] ⇓ t′
t1 t2 ⇓ t′

t1 ⇓ t′1 t2 ⇓ t′2
t1 t2 ⇓ t′1 t′2

Normalizer:
eval t

1.2 Denotational aka Mathematical

Grammar:

t ::= x | λx. t | t t

Semantics:

JxKρ , ρ(x)

Jλx. tKρ , VLam (fun x -> JtKρ[x 7→ x])

Jt1 t2Kρ , f (Jt2Kρ)

if Jt1Kρ = VLam f

Normalizer:
lift t []

2

1.3 Reduction Semantics

1.3.1 Small-step aka Structural

Grammar:

t ::= x | λx. t | t t
v ::= x | λx. v

Semantics:
t1 → t′1

t1 t2 → t′1 t2

t2 → t′2
v1 t2 → v1 t′2

t→ t′

λx. t→ λx. t′ (λx. v1) v2 → v1[v2/x]

Normalizer:
fix step t

1.3.2 Evaluation Context

Grammar:

t ::= x | λx. t | t t
v ::= x | λx. v
E ::= • | E t | v E | λx. E

Semantics:

EJ(λx. v1) v2K , v1[v2/x]

Normalizer:

repeat (recompose ◦ contract ◦ decompose)

1.3.3 Rewriting System

Grammar:

t ::= S | K | t t

3

Semantics:

S x y z = x z (y z)

K x y = x

Normalizer:

repeat (rewrite S eq || rewrite K eq)

1.3.4 Transition System aka Abstract Machines

CEK, by Felleisen et al.
Grammar:

t ::= x | λx. t | t t
v ::= [x, t, e]

k ::= stop | fun(v, k) | arg(t, e, k)

Semantics:

t→ 〈t, ·, stop〉
〈x, e, k〉 →e 〈k, e(x)〉

〈λx. t, e, k〉 →e 〈k, [x, t, e]〉
〈t1 t2, e, k〉 →e 〈t1, e, arg(t2, e, k)〉

〈arg(t, e, k), v〉 →c 〈t, e, fun(v, k)〉
〈fun([x, t, e], k), v〉 →c 〈t, e[x 7→ v], k〉

〈stop, v〉 → v

Normalizer: it is normalizing.

2 Static

2.1 Relational

2.1.1 Simple Types

Grammar:

t ::= x | λx : τ. t | t t
τ ::= A | τ → τ

4

Semantics:

Γ(x) = τ

Γ ` x ↑ τ
Γ[x 7→ τ1] ` t ↑ τ2

Γ ` λx : τ1. t ↑ τ1 → τ2

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1
Γ ` t1 t2 ↑ τ2

2.1.2 Linear Types

Grammar:

t ::= x | λx : τ. t | t t
τ ::= A | τ (τ

Semantics:

{(x, τ)} ` x ↑ τ
Γ ∪ {(x, τ1)} ` t ↑ τ2

Γ ` λx : τ1. t ↑ τ1(τ2

Γ1 ` t1 : τ1(τ2 Γ2 ` t2 : τ1
Γ1] Γ2 ` t1 t2 ↑ τ2

Note:] denotes the disjoint union of environments.

2.2 Axiomatic

Q language, by E. Ernst.
Grammar:

s ::= skip | x := e | s; s | if e then s else s | while e do s

Semantics:

{P} skip {P} {P [e/x]} x := e {P}

{P} s1 {R} {R} s2 {Q}
{P} s1; s2 {Q}

{P ∧ e} s1 {Q} {P ∧ ¬e} s2 {Q}
{P} if e then s1 else s2 {Q}

{P ∧ e} s {P}
{P} while e do s {P ∧ ¬e}

P ⇒ P ′ {P ′} s {Q′} Q′ ⇒ Q

{P} s {Q}

{P} s {Q1} {P} s {Q2}
{P} s {Q1 ∧Q2}

{P1} s {Q} {P2} s {Q}
{P1 ∨ P2} s {Q}

5

A Substitution

Here I show a couple of different approaches to implement substitution (t′[t/x]).

A.1 Capture Avoiding Substitution

x[t/x] , t

y[t/x] , y

(t1 t2)[t/x] , t1[t/x] t2[t/x]

(λx. t′)[t/x] , λx. t′

(λy. t′)[t/x] , λy. t′[t/x]

if y is not free in t

A.2 De Bruijn

The idea behind De Bruijn indecies is to store the reference to the lambda
that bound the variable instead of the variable. Thus, λx. x would be λ0,
and λf. λg. λx. f x (g x) becomes λλλ2 0 (1 0). We can thus define an
algorithm to go from the usual representation to De Bruijn representation:

JxKρ , indexOf(x, ρ)

Jλx. tKρ , λJtKx::ρ
Jt1 t2Kρ , Jt1Kρ Jt2Kρ

Now substitution ((λM) N) happens in three steps, for all occurences:

1. Find a variable that refer to the λ, call it x.

2. Decrement the free variables in M .

3. Add x to all free variables in N .

6

B Environment Styles

B.1 Ordered Structure

Notation examples:

Γ1, x : τ,Γ2 ` x ↑ τ
Γ, x : τ1 ` t ↑ τ2

Γ ` λx : τ1. t ↑ τ1 → τ2

Implementation:

let empty = []

let put x tau Gamma = (x, tau) :: Gamma

let rec get x Gamma =

match Gamma with

| [] -> raise Not_found

| (k, v) :: Gamma’ ->

if k = x

then v

else get x Gamma’

B.2 Set

Notation examples:

(x, τ) ∈ Γ

Γ ` x ↑ τ
Γ ∪ {(x, τ1)} ` t ↑ τ2

Γ ` λx : τ1. t ↑ τ1 → τ2

In practice, this would be like the ordered structure.

B.3 Function

Notation examples:

Γ(x) = τ

Γ ` x : τ

Γ[x 7→ τ1] ` t ↑ τ2
Γ ` λx : τ1. t ↑ τ1 → τ2

Implementation:

let empty = fun x’ -> raise Not_found

let put x tau Gamma = fun x’ ->

7

if x = x’

then tau

else Gamma x’

let get x Gamma = Gamma x

8

Assembling Assembly

Christian Clausen
christia@cs.au.dk

May 30, 2014

General:

prog ::= instr∗

loc ∈ {n ∈ N | n < len(prog)}

1 3-Counter Machine

1.1 Formal Semantics

var ∈ {ax,bx,cx}
instr ::= inc var

| dec var

| zero var then loc else loc

state ::= Z× Z× Z× loc

Ppc = inc ax

〈ax, bx, cx, pc〉 → 〈ax + 1, bx, cx, pc + 1〉
Ppc = dec ax

〈ax, bx, cx, pc〉 → 〈ax− 1, bx, cx, pc + 1〉
Ppc = zero ax then m else n ax = 0

〈ax, bx, cx, pc〉 → 〈ax, bx, cx,m〉
Ppc = zero ax then m else n ax 6= 0

〈ax, bx, cx, pc〉 → 〈ax, bx, cx, n〉

1

2 IJVM

2.1 Formal Semantics

method :: = .method method directive∗ instr+

directive :: = .args N
| .locals N
| .define var = N

instr :: = bipush Z | pop
| dup | swap
| iadd | isub
| iand | ior
| goto loc

| ifeq loc | iflt loc

| if icmpeq loc

| iinc var, Z
| istore var | iload var

| invokevirtual method | ireturn
| ldc w expr

| nop
state :: = (loc× (N→ Z)× Z∗)∗

2

Ppc = nop

(pc, l, s) :: sf → (pc + 1, l, s) :: sf

Ppc = bipush c

(pc, l, s) :: sf → (pc + 1, l, c :: s) :: sf

Ppc = pop

(pc, l, v :: s) :: sf → (pc + 1, l, s) :: sf

Ppc = dup

(pc, l, v :: s) :: sf → (pc + 1, l, v :: v :: s) :: sf

Ppc = swap

(pc, l, a :: b :: s) :: sf → (pc + 1, l, b :: a :: s) :: sf

Ppc ∈ {iadd,isub,iand,ior}
(pc, l, a :: b :: s) :: sf → (pc + 1, l, JPpcK(a, b) :: s) :: sf

Ppc = goto loc

(pc, l, s) :: sf → (loc, l, s) :: sf

Ppc = ifeq loc n = 0

(pc, l, n :: s) :: sf → (loc, l, s) :: sf

Ppc = ifeq loc n 6= 0

(pc, l, n :: s) :: sf → (pc + 1, l, s) :: sf

Ppc = iflt loc n < 0

(pc, l, n :: s) :: sf → (loc, l, s) :: sf

Ppc = iflt loc n 6< 0

(pc, l, n :: s) :: sf → (pc + 1, l, s) :: sf

Ppc = istore var

(pc, l, n :: s) :: sf → (pc + 1, l[var 7→ n], s) :: sf

Ppc = iload var

(pc, l, s) :: sf → (pc + 1, l, l(var) :: s) :: sf

Ppc = invokevirtual method locals = instanciate(method,~v)

(pc, l, ~v :: s) :: sf → (methodloc, locals, ·) :: (pc, l, s) :: sf

Ppc = ireturn

(pc, l, v :: s) :: (pc′, l′, s′) :: sf → (pc′ + 1, l′, v :: s′) :: sf

3

3 Our Language

3.1 Formal Semantics

var ∈ {ax,bx,cx,pc}
instr ::= inc var

| dec var

| zero var, loc, loc

| push var|loc|Z
| pop var

state ::= Z× Z× Z× loc× Z∗

Ppc = inc ax

〈ax, bx, cx, pc, stack〉 → 〈ax + 1, bx, cx, pc + 1, stack〉
Ppc = dec ax

〈ax, bx, cx, pc, stack〉 → 〈ax− 1, bx, cx, pc + 1, stack〉
Ppc = zero ax then loc1 else loc2 ax = 0

〈ax, bx, cx, pc, stack〉 → 〈ax, bx, cx, loc1, stack〉
Ppc = zero ax then loc1 else loc2 ax 6= 0

〈ax, bx, cx, pc, stack〉 → 〈ax, bx, cx, loc2, stack〉
Ppc = push ax

〈ax, bx, cx, pc, stack〉 → 〈ax, bx, cx, pc, ax :: stack〉
Ppc = push m

〈ax, bx, cx, pc, stack〉 → 〈ax, bx, cx, pc,m :: stack〉
Ppc = pop ax

〈ax, bx, cx, pc, a :: stack〉 → 〈a, bx, cx, pc, stack〉

3.2 Comparison with IJVM

See Figures 1 through 6. Notice: We can save two of our three registers when
calling a method as is clear from Figure 6.

4

.method method

.args 3

.define a = 1

.define b = 2

.locals 1

.define c = 3

iload a
iload b

Figure 1: IJVM

:method
pop cx
pop ax
pop bx
inc cx
inc cx
push cx

Figure 2: BotCode

ireturn

Figure 3: IJVM

pop cx
push ax
push cx
pop pc

Figure 4: BotCode

// push arguments
invokevirtual method

Figure 5: IJVM

push ax
push bx
push arguments
push pc
zero ax, method, method
pop cx
pop bx
pop ax
push cx

Figure 6: BotCode

5

3.3 How to use it

We now have two types of functions:

• One for stack calculations, ex.:

call :: a :: b :: s→ a · b :: s

• One for register calculations, ex.:

〈ax, bx, cx〉 → 〈bx, ax · bx, ?〉

MUL REC BEGIN
call :: a :: b :: s -> a * b :: s
:mul_rec
pop cx
pop ax
pop bx
inc cx
inc cx
push cx
zero ax, mul_rec_done, mul_rec_loop
:mul_rec_loop
push bx
push bx
dec ax
push ax
push pc
zero ax, mul_rec, mul_rec
push pc
zero ax, add, add
pop ax
pop cx
push ax
push cx
pop pc
:mul_rec_done
pop cx
push 0

6

push cx
pop pc
MUL REC END

MUL REG BEGIN
<a, b, ?> -> <b, a * b, ?>
:mul_reg
push ax
push bx
push 0
pop bx
pop ax
pop cx
zero cx, mul_reg_done, mul_reg_loop
:mul_reg_loop
push ax
push pc
zero ax, add_reg, add_reg
pop ax
dec cx
zero cx, mul_reg_done, mul_reg_loop
:mul_reg_done
pop cx
inc cx
inc cx
push cx
pop pc
MUL REG END

MUL CONST BEGIN
call :: a :: b :: s -> a * b :: s
:mul
pop cx
pop ax
pop bx
inc cx
inc cx
push cx

7

push pc
zero ax, mul_reg, mul_reg
pop ax
push cx
push ax
pop pc
MUL CONST BEGIN

MUL ITER BEGIN
call :: a :: b :: s -> a * b :: s
:mul_iter
pop cx
inc cx
inc cx
pop ax
pop bx
push cx # ret :: s
push 0 # 0 :: ret :: s
zero ax, mul_zero, mul_gen
:mul_zero
push pc
zero ax, swap, swap
pop pc
:mul_gen
push mul_loop
push bx
dec ax
zero ax, mul_zero, mul_gen
:mul_loop # b :: [b :: mul_loop] ˆ a :: 0 :: ret :: s
push pc
zero ax, add, add # b + b :: mul_loop :: [b :: mul_loop] ˆ (a - 1) :: 0 :: ret :: s
push pc
zero ax, swap, swap # mul_loop :: b + b :: [b :: mul_loop] ˆ (a - 1) :: 0 :: ret :: s
pop pc
MUL ITER END

8

4 Peephole Optimizations

See Figures 7 through 8.

zero var, loc1, loc2
...
:loc1
zero var, loc3, loc4

Figure 7: Unoptimized

zero var, loc3, loc2
...
:loc1
zero var, loc3, loc4

Figure 8: Optimized

5 Exercises

1. Write a swap function:

call :: a :: b :: s→ b :: a :: s

2. Write a dup function:

call :: n :: s→ n :: n :: s

3. Write a non-recursive add function:

call :: a :: b :: s→ a + b :: s

4. Write a register add function:

〈ax, bx, cx〉 → 〈?, ax + bx, cx〉

5. Write and and or functions:

call :: b1 :: b2 :: s→ b1 ∧ b2 :: s

call :: b1 :: b2 :: s→ b1 ∨ b2 :: s

6. If we chose true to be 0 and false to be anything else, then prove
that and = add. Is there a function for or? What happens if we set
true = 1, false = 0, do the functions exist?

9

7. Write an is_neg function:

call :: n :: s→ is negn :: s

8. Write a recursive fibonacci function:

call :: n :: s→ fibn :: s

9. Write a non-recursive fibonacci function:

call :: n :: s→ fibn :: s

10. Which of the two fibonacci functions is fastest? Why?

11. Write a recursive factorial function:

call :: n :: s→ n! :: s

12. Write a non-recursive factorial function:

call :: n :: s→ n! :: s

13. Write a non-recursive factorial function using the loop technique:

call :: n :: s→ n! :: s

14. Which of the three factorial functions is fastest? Why?

10

Bits and Pieces

Christian Clausen
christia@cs.au.dk

June 6, 2014

We assume that all variables refer to N -bit integers. But for the first
three sections, we are going to use N = 3.

Precedence: x + x� x⊕ x & x | x

1 Turning [last/tail] [on/off]

tail off last off last on tail on
x x + 1 x− 1 x & x + 1 x & x− 1 x | x + 1 x | x− 1
000 001 111 000 000 001 111
001 010 000 000 000 011 001
010 011 001 010 000 011 011
011 100 010 000 010 111 011
100 101 011 100 000 101 111
101 110 100 100 100 111 101
110 111 101 110 100 111 111
111 000 110 000 110 111 111

1

2 Some unary operators

x −x ¬x x< x> x 6= x�

000(0) 000 111 000 000 000 000
001(1) 111 110 000 001 001 000
010(2) 110 101 000 001 001 000
011(3) 101 100 000 001 001 000
100(-4) 100 011 001 001 001 111
101(-3) 011 010 001 000 001 111
110(-2) 010 001 001 000 001 111
111(-1) 001 000 001 000 001 111
x< and x> can be implemented as x ≫ (N − 1) and −x ≫ (N − 1)

respectively. x 6= can be implemented as x< | x>. The operator x� can be
calculated by: x � (N − 1); but if we don’t have �, we can also define it
as: −(x<).

3 Dividing with 2

Math bx/2c x÷ 2 dx/2e
Bits x + 0� 1 x + x< � 1 x + 1� 1
000(0) 000 000 000
001(1) 000 000 001
010(2) 001 001 001
011(3) 001 001 110
100(-4) 110 110 110
101(-3) 110 111 111
110(-2) 111 111 111
111(-1) 111 000 000

Notice the overflow in 3 + 1� 1, we will return to this later.

2

4 General

x + y � c = (x� c) + (y � c)

x + y � c = (x� c) + (y � c) No overflow

x + y = ((x & y)� 1) + (x⊕ y)

x + y = x⊕ y x = 0 ∨ y = 0

5 Average

b(x + y)/2c = x + y≫ 1 x, y ≥ 0

b(x + y)/2c = x + y � 1 x, y different signs

5.1 Unsigned

(x + y)÷ 2 = b(x + y)/2c
= ((x & y)� 1) + (x⊕ y)� 1

= (((x & y)� 1)� 1) + ((x⊕ y)� 1) No overflow

= (x & y) + ((x⊕ y)� 1)

Note that while this result works for any x, y signed or unsigned. If we are
in a signed environment, the first equal doesn’t apply.

Remember the overflow from section 3, which we got from adding one
and dividing with two? We can see that as the average of 1 and x, thus we
can use this formula.

6 Comparing

6.1 With 0

sign(x) =





−1 if x < 0

0 if x = 0

1 if x > 0

sign(x) = x� | x>

3

6.2 With y

cmp(x, y) =





−1 if x < y

0 if x = y

1 if x > y

cmp(x, y) = sign(x− y) No overflow

= (x ≥ y)− (x ≤ y) (Type error)

= (x > y)− (x < y) (Type error)

= (y < x)− (x < y) (Type error)

6.3 Less than

x < y ⇔ y − x > 0 No overflow

⇔ (y � 1)− (x� 1) > 0 Not too close

⇔ (y � 1)− (x� 1) + (¬x & y & 1) > 0

= ((y � 1)− (x� 1) + (¬x & y & 1))>

7 Max and Min

doz(x, y) =

{
x− y x > y

0 otherwise

max(x, y) =

{
x x > y

y otherwise

=

{
y + (x− y) x > y

y + 0 otherwise

= y + doz(x, y)

min(x, y) = x− doz(x, y)

doz(x, y) = (x− y) & − (y < x)

4

8 Absolute Values

abs(x− y) = doz(x, y) + doz(y, x)

abs(x) = (x⊕ x�)− x�

9 Exchanging Values

x← x⊕ y; y ← x⊕ y;x← x⊕ y;

t← x⊕ y; ...;x← x⊕ t; y ← y ⊕ t;

next(x, a, b) =

{
a x = b

b x = a

= x⊕ (a⊕ b)

= a & − ((x⊕ a)6=)

| b & − ((x⊕ b) 6=)

next(x, a, b, c) =





a x = c

b x = a

c x = b

= a & − ((x⊕ a)6=) & − ((x⊕ b) 6=)

| b & − ((x⊕ b) 6=) & − ((x⊕ c)6=)

| c & − ((x⊕ c)6=) & − ((x⊕ a)6=)

5

10 Exponentiation

x11 = x10112

= x · x10102

= x · (x1012)2

= x · (x · x1002)2

= x · (x · (x102)2)2

= x · (x · ((x12)2)2)2

= x · (x · ((x · x02)2)2)2

= x · (x · ((x · 1)2)2)2

exp(b, unsigned e):

r = 1;

while(true){

if(e & 1 == 1) r *= b;

e >>= 1;

if(e == 0) return r;

b *= b;

}

powerOf2(unsigned e):

return 1 << e;

11 Logarithms

pop(unsigned b):

b = (b & 0x55555555) + (b >>> 1 & 0x55555555);

b = (b & 0x33333333) + (b >>> 2 & 0x33333333);

b = (b & 0x0F0F0F0F) + (b >>> 4 & 0x0F0F0F0F);

b = (b & 0x00FF00FF) + (b >>> 8 & 0x00FF00FF);

b = (b & 0x0000FFFF) + (b >>> 16 & 0x0000FFFF);

return b;

nlz(unsigned b):

b |= b >>> 1;

b |= b >>> 2;

6

b |= b >>> 4;

b |= b >>> 8;

b |= b >>> 16;

return pop(~b);

log2(unsigned b):

return 31 - nlz(b);

log2(unsigned b):

b |= b >>> 1;

b |= b >>> 2;

b |= b >>> 4;

b |= b >>> 8;

b |= b >>> 16;

return pop(b) - 1;

12 Exercises

1. Find functions (expressions possibly using x and y) for each colomn:
x y
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

2. In Spare Time Teaching, we have a tradition of talking about De Mor-
gan, and let’s not make an exception of it here. We all know the usual
De Morgan equations; but what about the rest:

¬(a | b) = ¬a & ¬b
¬(a & b) = ¬a | ¬b
¬(a⊕ b) =?

¬(a + b) =?

¬(a− b) =?

¬(−a) =?

3. Assuming that you have a primitive instruction x= =

{
1 x = 0

0 otherwise
.

7

Make an expression to determine if an unsigned integer is a power of
two (2n) or zero, using primitive 3 instructions.

4. How could you make x= if you didn’t have it?

5. There are 3 kinds of bit shifts: Logical (�, ≫), arithmetic (�), and

rotating (
r�,

r�). Here is an example: b4b3b2b1b0
r� 2 = b1b0b4b3b2.

Come up with expressions that are equivalent to
r�, and

r�.

6. Come up with an unsigned version of less than (
u
<).

7. Explain when
u
< would be useful?

8. If our machine has doz as a primitive, then we can code < in four
instructions (counting duplicated subexpressions once), how?

9. One could argue that using zero as false and one as true is aesthetically
pleasing, but then another might argue that using the bitstring of only
ones for true and the bitstring of zeroes is more useful, or faster. Come
up with expressions to convert both ways. How many instructions are
necessary?

10. What would happen if we called powerOf2 with 31? What about a
number greater than 31? What would happen if we called exp with 2
and something greater than 31?

11. What would happen if we accidentally used � instead of ≫ in the
pop function? What about in nlz?

12. Our version of pop uses 25 (including assignment) instructions, can you
reduce it without using branches? Hints:

• Are all the masks necessary?

• ♥ There is a solution using 20.

8

Introduction to Type Classes (in Haskell)

Richard Möhn

2014-06-13

0. Outline

1,2 Intro

3-8 Eq

9-b Ord etc.

c-11 ADTs

12-15 Package

16-18 Multi

1a,1b F & M

1c Schluss

20,21 Bonus

1. Type classes central to Haskell. Means: not just cool feature, but part
of how it works.

2. Note: not using idiomatic Haskell for didactic reasons. (Mental over-
load and so on.) cf. Danvy and Scheme.

3. Have the member function:

member e l = foldl f False l

where

f a x = (e == x) || a

Works for integers, floats, characters, etc., therefore polymorphic. When
we manually provide the type, type-checking fails:

1

member :: a -> [a] -> Bool

Following advice, we add something and it works:

member :: Eq a => a -> [a] -> Bool

Also the type inferred by Haskell.

4. Eq a type constraint. - Constrains the polymorphism of a.

5. What about non-built-in types? member doesn’t work for Nat. Define
universal member:

lmember eq e l = foldl f False l

where

f a x = (eq e x) || a

Works on Nat with

eq = eqNat (see code, derivation/proof: exercise)

6. Clumsy. We can of course use Haskell’s built-in mechanism. But we
could do it like that or implement it with a preprocessor on top of
Hindley-Milner [1]. What is Haskell’s built-in mechanism? - Type
constraints are requirement that the actual type put in place of the
variable be member of a type class.

member :: Eq a => a -> [a] -> Bool

- What is put in for a has to be a member of type class Eq.

7. What is a type class? Declared like this:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

x /= y = not (x == y)

x == y = not (x /= y)

2

Function signatures and default implementations.

8. How do I make a type member of a type class? - Implement some
functions:

instance Eq Nat where

(==) = eqNat

(/=) covered by default implementation.

9. What if we want to sort?

sort l = foldr insert [] l

insert x sl = paraList f [x] sl

where

f y (ys, lwx) = if x > y then

y:lwx

else

x:y:ys

Works for numbers and other stuff, but not for Nat. - Type:

sort :: Ord a => [a] -> [a]

Because of ¿, what is put in for a has to be member of type class Ord.

a. Implementing Ord:

class (Eq a) => Ord a where

compare :: a -> a -> Ordering

(<), (<=), (>=), (>) :: a -> a -> Bool

max, min :: a -> a -> a

compare x y | x == y = EQ

| x <= y = LT

| otherwise = GT

3

x <= y = compare x y /= GT

x < y = compare x y == LT

x >= y = compare x y /= LT

x > y = compare x y == GT

-- Note that (min x y, max x y) = (x,y) or (y,x)

max x y | x <= y = y

| otherwise = x

min x y | x <= y = x

| otherwise = y

The default declarations allow a user to create an Ord instance either
with a type-specific compare function or with type-specific == and <=

functions [2].

Note the constraint Eq a. - Sufficient to implement (<=). See code.

b. Many other built-in type classes, eg. Num, Integral, Enum with hierar-
chy and built-in types implementing them. See [2].

c. Might use type classes to specify abstract data types. Note: this is not
a good example. You shouldn’t use type classes for specifying abstract
data types.

class Queue q where

empty :: q a

push :: a -> q a -> q a

peek :: q a -> a

pop :: q a -> q a

and implement them like this:

instance Queue [] where

empty = []

push x l = l

peek (x:x’:xs) = x’

pop (x:xs) = xs ++ [x]

This type-checks, but doesn’t make sense.

4

10. Type classes usually accompanied by set of laws the implementations
must fulfill, like:

(ia) pop (push x empty) = empty

(iia) peek (push x empty) = x

For LIFO:

(ib) pop (push x q) = q

(iib) peek (push x q) = x

For FIFO:

(ic) peek (push x_n ... (push x_1 (push x_0 empty))...) = x_0

(iic) pop (push x_n ... (push x_1 (push x_0 empty))...)

= (push x_n ... (push x_1 empty)...)

(ib) and (ic) imply (ia).

(iib) and (iic) imply (iia).

Above implementation violates these laws.

11. Better implementation (LIFO):

instance Queue [] where

empty = []

push x l = x:l

peek (x:xs) = x

pop (x:xs) = xs

Proving (ib):

pop (push x l)

= pop (push x l)

= pop (x:l)

= l

5

Proving (iib):

peek (push x l)

= peek (x:l)

= x

12. We can have more fancy type classes:

class Package p where

cmap :: (a -> b) -> p a -> p b

and implement them like this:

instance Package [] where

cmap f [] = []

cmap f (x:xs) = cmap f xs

It type-checks, but doesn’t make sense.

13. Therefore add laws:

(i) cmap id q = id q

(ii) cmap (f . g) q = cmap f (cmap g q)

Above implementation violates these laws.

14. Better implementation:

instance Package [] where

cmap f l = map f l

We prove (i) by induction on l:

- base case:

cmap id [] = map id [] = [] = id []

6

- induction hypothesis:

cmap id xs = map id xs = id xs

- induction case:

cmap id (x:xs) =! id (x:xs)

LHS = map id (x:xs)

= id x : (map id xs)

= id x : (cmap id xs)

IH= id x : (id xs)

= x:xs

= id (x:xs)

Proof for (ii) is left as an exercise.

15. Fancy implementation:

instance Package ((->) t) where

cmap fab fta = \ vt -> fab (fta vt)

Proving (i):

cmap id fta = \ vt -> id (fta vt)

= \ vt -> fta vt

= fta

Proving (ii):

LHS = cmap (f . g) fta

= \ vt -> (f . g) (fta vt)

= \ vt -> f (g (fta vt))

RHS = cmap f (cmap g fta)

= cmap f (\ vtg -> g (fta vtg))

= \ vtf -> f ((\ vtg -> g (fta vtg)) vtf)

= \ vtf -> f (g (fta vtf))

= \ vt -> f (g (fta vt)) = RHS

7

16. Even fancier type class (names are not meant to convey any intuition):

class Multi m where

pack :: a -> m a

rpmap :: m a -> (a -> m b) -> m b

With laws:

(i) rpmap (pack a) f = f a

(ii) rpmap vma pack = vma

(iii) rpmap vma (\ x -> rpmap g (f x)) = rpmap (rpmap f vma) g

17. Useful implementation:

instance Multi Maybe where

pack x = Just x

rpmap mx f = case mx of

Nothing -> Nothing

Just x -> f x

Proof of law-abidingness is left as an exercise.

18. Application: minus. Predecessor often like this:

pred Z = Z

pred (S n) = n

Minus (monus) as a fold:

monus n1 n2 = foldNat pred n1 n2

Alternative predecessor:

pred’ Z = Nothing

pred’ (S n) = Just n

8

Minus not so pretty anymore:

minus n1 n2 = foldNat f e n2

where

e = Just n1

f mn = case mn of

Nothing -> Nothing

Just n -> pred’ n

Use membership of Maybe in Multi:

minus’ n1 n2 = foldNat f e n2

where

e = pack n1

f mn = rpmap mn pred’

Also Maybe chaining see code.

19. Package often called Functor and defined like this:

class Functor f where

fmap :: (a -> b) -> f a -> f b

Laws are the same.

1a. Multi is often called Monad and defined like this:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Laws are the same. Haskell has some extra stuff.

1b. Functor and Monad can be implemented by a host of things. No
general intuition.

1c. Conclusion:

9

• We have seen the type class mechanism in Haskell.

• It can be used for any Hindley-Milner type system (preprocessor)
[1].

• We have seen some examples of how to use it ourselves.

• Main aim: introduce functors and monads through the back door.
- Look at definitions and don’t get confused by others’ intuitions
and whine.

20. Exercises:

• Remove ”deriving Show” from the definition of Nat and give your
own implementation of Show.

• Make Nat implement Enum.

• Define the data type LInteger as a pair of Nats and make it
implement Num. (Or even Integral if you feel good.)

• Prove that the list implementation of Package fulfills the second
law for implementations of Package.

• Prove that the Maybe implementation of Multi fulfills the laws for
implementations of Multi.

• Solve the exercises in [5]. You might notice a similarity to the
type classes we defined. Prove that your solutions also abide by
the respective laws.

• Write a monad tutorial.

Addenda to exercises about folds:

• Prove that eqNat implements equality for Nats.
Hint: Specify equality on Nat using a recursive function eqNatRec
and prove that ∀n1, n2 ∈ N, eqNat n1 n2 = eqNatRec n1 n2 by
induction on n1.

• Using program calculation, derive insert.
Hint: Specify insertion of an element into a sorted list as a re-
cursive function insertRec. Using the principle of induction, find
insert as a function that fulfills insert x l = insertRec x l for
any sorted list l.

21. References:

10

1 Philip Wadler, Stephen Blott: How to make ad-hoc polymorphism
less ad hoc. In: 16th Symposium on Principles of Programming
Languages, Austin, Texas, January 1989

2 Simon Marlow (ed.): Haskell 2010 Language Report. (http://www.haskell.org/onlinereport/haskell2010/haskell.html,
2014-06-12)

3 Cezar Ionescu: Advanced Functional Programming. Freie Universitt
Berlin, 2013. (http://www.pik-potsdam.de/members/ionescu/advanced-
functional-programming, 2014-05-12)

4 Mike Vanier: Yet Another Monad Tutorial. 2010-07-25. (http://mvanier.livejournal.com/3917.html,
2014-06-12)

5 Dan Burton: 20 intermediate exercises. 2013-03-04 (https://www.fpcomplete.com/user/DanBurton/20-
intermediate-exercises, 2014-06-14)

11

Combinator Gymnastics

Christian Clausen

August 21, 2014

1 Reminder: Pairs and Tuples

mk_pair ≡ λ a b c . c a b

π2
1 ≡ λ p . p (λ a b . a)

π2
2 ≡ λ p . p (λ a b . b)

<x, y> mk_pair a b = λ c . c x y

mk_tuple3 ≡λ a b c d . d a b c

π3
1 ≡ λ p . p (λ a b c . a)

π3
2 ≡ λ p . p (λ a b c . b)

π3
3 ≡ λ p . p (λ a b c . c)

mk_tuple4 ≡λ a b c d e . e a b c d

π4
1 ≡ λ p . p (λ a b c d . a)

...

Pretty regular structure. Can we make a function mk_mk_tuple N?

2 Basis

For closed terms. By induction on t:

AJt1 t2K = AJt1K AJt2K
AJλx.xK = I

AJλx.λy.tK = AJλx.AJλy.tKK
AJλx.tK = K AJtK if t doesn’t use x

AJλx.t1 t2K = S AJλx.t1K AJλx.t2K

1

I = λ x . x

K = λ x y . x

S = λ f g x . f x (g x) = λ f g x . (f x) (g x)

We now have a 3-point basis for the closed lambda terms.
However, we know that:

S K I →β λ x . K x (I x) →β λ x . x = I

or

S K S →β λ x . K x (S x) →β λ x . x = I

...

S K M →β λ x . K x (M x) →β λ x . x = I

therefore:

S K K →β λ x . K x (K x) →β λ x . x = I

And thus we have a 2-point basis.

2.1 Example

A[λ a b c . c a b] = A[λ a . A[λ b c . c a b]]

= A[λ a . A[λ b . A[λ c . c a b]]]

= A[λ a . A[λ b . S A[λ c . c a] A[λ c . b]]]

= A[λ a . A[λ b . S (S A[λ c . c] A[λ c . a]) (K b)]]

= A[λ a . A[λ b . S (S I (K a)) (K b)]]

= A[λ a . S A[λ b . S (S I (K a))] A[λ b . K b]]

= A[λ a . S (K S (S I (K a))) (S A[λ b . K] A[λ b . b])]

= A[λ a . S (K S (S I (K a))) (S (K K) I)]

= S A[λ a . S (K S (S I (K a)))] A[λ a . (S (K K) I)]

= S (S A[λ a . S] A[λ a . K S (S I (K a))]) (K (S (K K) I))

= S (S (K S) (S A[λ a . K] A[λ a . S (S I (K a))])) (K (S (K K) I))

= S (S (K S) (S (K K) (S A[λ a . S] A[λ a . S I (K a)]))) (K (S (K K) I))

= S (S (K S) (S (K K) (S (K S) (S A[λ a . S] A[λ a . I (K a)])))) (K (S (K K) I))

= S (S (K S) (S (K K) (S (K S) (S (K S) (S A[λ a . I] A[λ a . K a]))))) (K (S (K K) I))

= S (S (K S) (S (K K) (S (K S) (S (K S) (S (K I) (S A[λ a . K] A[λ a . a])))))) (K (S (K K) I))

= S (S (K S) (S (K K) (S (K S) (S (K S) (S (K I) (S (K K) I)))))) (K (S (K K) I))

2

3 More Detailed Basis

Again for closed terms. By induction on t:

BJt1 t2K = BJt1K BJt2K
BJλx.xK = I

BJλx.λy.tK = BJλx.BJλy.tKK
BJλx.tK = K BJtK if t doesn’t use x

BJλx.t1 t2K = B BJt1K BJλx.t2K if t1 doesn’t use x

BJλx.t1 t2K = C BJλx.t1K BJt2K if t2 doesn’t use x

BJλx.t1 t2K = S BJλx.t1K BJλx.t2K

B = λ f g x . f (g x)

C = λ f g x . (f x) g = λ f g x . f x g

We now have a 5-point basis for the closed lambda terms.
We can add an η rule before the ”B-rule”:

BJλx.t xK = BJtK if t doesn’t use x

3.1 Example

B[λ a b . b a] = B[λ a . B[λ b . b a]]

= B[λ a . C B[λ b . b] a]

= B[λ a . C I a]

= C I

B[λ a b c . c a b] = B[λ a . B[λ b c . c a b]]

= B[λ a . B[λ b . B[λ c . c a b]]]

= B[λ a . B[λ b . C B[λ c . c a] b]]

= B[λ a . B[λ b . C (C B[λ c . c] a) b]]

= B[λ a . B[λ b . C (C I a) b]]

= B[λ a . C (C I a)]

= B C B[λ a . C I a]

= B C (C I)

B[λ a b c d . d a b c] = B (B C) (B C (C I))

3

〈n, t〉 f−→ 〈S n, n B C t〉

f ≡ λ p . <S (π2
1 p), (π2

1 p) B C (π2
2 p)>

mk_mk_tuple ≡ λ n . π2
2 (n f <0, I>)

4 Exercises

Warm-up Prove that that 〈a, b〉, π2
1, and π2

2 are mutually correct.
(Hint: π2

1〈a, b〉 = a, and π2
2〈a, b〉 =?)

1. Apply the A algorithm to ω = λx.x x.

2. Apply the A algorithm to Ω = ω ω.

3. Apply the A algorithm to YTurring = A A, where A = λxy.y (x x).

4. ♥ Discover a 1-point basis.

5. Apply the B algorithm to ω = λx.x x.

6. Apply the B algorithm to Ω = ω ω.

7. Apply the B algorithm to Yturring = A A, where A = λxy.y (x x).

8. Apply B to π2
2.

9. Apply B to π3
3.

10. Apply B to π4
4.

11. Implement a lambda term last N = πNN .

12. Apply B to π2
1.

13. Apply B to π3
1.

14. Apply B to π4
1.

15. Implement a lambda term fst N = πN1 .

4

16. If you haven’t done so already, implement the B algorithm in a pro-
gramming language.

17. Run your algorithm on:

(a) π3
1, π3

2, π3
3.

(b) π4
1, π4

2, π4
3, π4

4.

(c) π5
1, π5

2, π5
3, π5

4, π5
5.

18. ♥ Implement a lambda term π N n = πNn .

19. Implement the A algorithm in a programming language.

20. Run your algorithm on:

(a) π3
1, π3

2, π3
3.

(b) π4
1, π4

2, π4
3, π4

4.

Is the result as structured? As meaningful?

21. When a function does not have a fixed number of arguments, it is
called variadic. Implement a variadic version of K N x y1 y2 ... yn
that will always return the first argument.

22. ♥ Implement a variadic version of S N f1 f2 ... fn x that will pass
the last argument to all the previous.

23. ♥ Implement a variadic function V N M f1 f2 ... fm ... fn x that
will pass the last argument to fm.

5

Introduction to Abstract Interpretation

Christian Clausen, 20081015

September 4, 2014

1 Operational Semantics

var ∈ V ar = {X, Y, Z}
instr ::= inc var

| dec var

| zero var then m else n

| push m

| pop var

| stop

Ppc = inc X

〈X,Y, Z, pc, stack〉 → 〈X + 1, Y, Z, pc+ 1, stack〉
Ppc = dec X

〈X,Y, Z, pc, stack〉 → 〈X − 1, Y, Z, pc+ 1, stack〉
Ppc = zero X then m else n X = 0

〈X,Y, Z, pc, stack〉 → 〈X,Y, Z,m, stack〉
Ppc = zero X then m else n X 6= 0

〈X,Y, Z, pc, stack〉 → 〈X,Y, Z, n, stack〉
Ppc = push X

〈X,Y, Z, pc, stack〉 → 〈X,Y, Z, pc+ 1, X :: stack〉
Ppc = push m

〈X,Y, Z, pc, stack〉 → 〈X,Y, Z, pc+ 1,m :: stack〉
Ppc = pop X

〈X,Y, Z, pc, a :: stack′〉 → 〈a, Y, Z, pc+ 1, stack′〉

1

2 Abstract Domain

Interval :=

−∞,∞

.
.

. . . −1, 1 . .
.

. . . −1, 0 0, 1 . .
.

. . . −1,−1 0, 0 1, 1 . . .

⊥

2.1 Join and Meet

X t ⊥ = X

⊥ t Y = Y

[a, b] t [c, d] = [min(a, c),max(b, d)]

X u ⊥ = ⊥
⊥ u Y = ⊥

[a, b] u [c, d] =

{
[max(a, c),min(b, d)] if max(a, c) ≤ min(b, d)

⊥ otherwise

3 Galois Connection

℘(N× N× N× PC × Stacks) −−→←−− PC → ℘(N× N× N× Stacks)
−−→←−− PC → ℘(Stacks)

−−−→←−−−α
γ

PC → Interval

where the last step is achieved by:

α(∅) = ⊥
α(S) = [min(len(S)),max(len(S))]

γ(⊥) = ∅
γ([a, b]) = {stack | a ≤ len(stack) ≤ b}

2

4 Abstract Operators

−− : ℘(Stacks)→ ℘(Stacks)

=0 = λS.S

<>0 = λS.S

+1 = λS.S

-1 = λS.S

push = λS.{n :: s | s ∈ S ∧ n ∈ N}
pop = λS.{s′ | s ∈ S ∧ s = n :: s′}

The first four operators are identical thus we will treat them at once. We
have:

α ◦ (λS.S) ◦ γ(⊥) = α(∅)
= ⊥

α ◦ (λS.S) ◦ γ([a, b]) = α({s | a ≤ len(s) ≤ b})
= [a, b]

For push, we have:

α ◦ (λS.{n :: s | s ∈ S ∧ n ∈ N}) ◦ γ(⊥) = α({n :: s | s ∈ ∅ ∧ n ∈ N})
= α(∅)
= ⊥

α ◦ (λS.{n :: s | s ∈ S ∧ n ∈ N}) ◦ γ([a, b]) = α({n :: s | s ∈ {s | a ≤ len(s) ≤ b} ∧ n ∈ N})
= α({n :: s | a ≤ len(s) ≤ b ∧ n ∈ N})
= [1 + a, 1 + b]

For pop, we have:

α ◦ (λS.{s′ | s ∈ S ∧ s = n :: s′}) ◦ γ(⊥) = α({s′ | s ∈ ∅ ∧ s = n :: s′})
= α(∅)
= ⊥

α ◦ (λS.{s′ | s ∈ S ∧ s = n :: s′}) ◦ γ([a, b]) = α({s′ | s ∈ {s | a ≤ len(s) ≤ b} ∧ s = n :: s′})
= α({s′ | a ≤ len(s) ≤ b ∧ s = n :: s′})
= [a− 1, b− 1]

5 Widening and Narrowing

X 5⊥ = X

⊥5 Y = Y

[a, b]5 [c, d] =

[{
−∞ c < a

a a ≥ c ,
{
∞ d > b

b d ≤ b

]

3

X 4⊥ = ⊥
⊥4 Y = ⊥

[a, b]4 [c, d] =

[{
c a = −∞
a otherwise

,

{
d b =∞
b otherwise

]

6 Abstract Transfer Function

T#(S) := [0 7→ [0, 0]]

∪




⋃

pc∈dom(S)
Ppc=push m

[pc+ 1 7→ push(S(pc))]




∪




⋃

pc∈dom(S)
Ppc=pop var

[pc+ 1 7→ pop(S(pc))]




∪




⋃

pc∈dom(S)
Ppc=zero var, pc′, pc′′

[pc′ 7→ S(pc)] ∪ [pc′′ 7→ S(pc)]




∪




⋃

pc∈dom(S)
Ppc=inc var∨Ppc=dec var

[pc+ 1 7→ S(pc)]




where f ∪ g is the pointwise join; f ∪ g = λpc.f(pc) t g(pc).

4

Logic Programming

Mathias Vorreiter Pedersen

September 19, 2014

Prolog

These notes will introduce the basics of logic programming using the Prolog programming language.

Datatypes
Prolog has 1 datatype called a term. A term is either

1. An atom

2. A number, which can either be an integer or a floating point number.

3. A variable

4. A compound term

In the subset of Prolog which we will be using an atom is a sequence of symbols, starting with a
lower case letter, or the empty list, which is written as [].

A variable is any sequence of symbols that start with an upper case letter like A, B1, MyVariable
etc.

Finally a compound term (or complex term) is a term of the form f(arg1, arg2, . . . , argN), where f
is an atom (usually called the functor) and arg1, arg2, . . . , argN are terms (usually called arguments).
A nonempty list [arg1, arg2, . . . , argN] is also a compound term.

Syntax
A Prolog program is a list of Horn clauses ending with a dot. A horn clause is either a fact, which
is a compound term or a rule of the form

head (arg1, arg2, . . . , argN) :- fact1, fact2, . . . , factN
where head is an atom and arg1, arg2, . . . , argN, fact2, . . . , factN are terms.
We say that the list of horn clauses defines a knowledge base on which we can perform queries.

An example knowledge base is

append([], L, L).
append([H | T], L, [H | L2]) :- append(T, L, L2).

reverse([], L, L).
reverse([H | T], L, R) :- reverse(T, [H | L], R).

reverse(L, R) :- reverse(L, [], R).

1

Unification

Unification is the process of finding variable bindings such that a goal is satisfied. Unification can
be viewed as a recursive procedure on two terms. Two terms t1 and t2 unify iff:

1. t1 is an atom with symbol a1, t2 is an atom with symbol a2 and a1 = a2.

2. t1 is an unbound variable and t2 is a term. The same is true if t2 is an unbound variable and
t1 is a term.

3. t1 is a bound variable, t2 is a term and the value bound to t1 unifies with t2. The same is
true if t2 is an unbound variable and t1 is a term.

4. t1 is a compound term with functor f1 and term list terms1, and t2 is a compound term with
functor f1 and term list terms2, and f1 = f2 and each pair (t1, t2) in zip(terms1, terms2)
unifies. Note that this requires that |terms1| = |terms2|.

Unification in Prolog is achieved using the =/2 goal. An example follows

1 ?- a = a.
true.

2 ?- X = a.
X = a.

3 ?- f(X, g(Y, a)) = f(h(a), g(Z, a)).
X = h(a),
Y = Z.

Or the last goal without syntactic sugar

1 ?- =(f(X, g(Y, a)), f(h(a), g(Z, a))).
X = h(a),
Y = Z.

Backtracking

Backtracking is the process of “undoing” choices made during unification. An example follows.

happy(X):-
at_datbar(X),
not_completely_hammered(X).

at_datbar(mathias).
at_datbar(christian).

not_completely_hammered(thor).
at_datbar(thor).

This causes Prolog to derive the following proof tree. First we unify the variable X with the atom
“mathias”. This choice fails since we can’t prove not_completely_hammered(mathias). This causes

2

Prolog to backtrack to the point where it chose the latest binding of X. Repeating this process two
more times it succeeds with X = “thor.”

This process is confirmed by SWI-Prolog, which performs the following operations, which corre-
sponds exactly to the proof tree.

[trace] 1 ?- happy(X).
Call: (6) happy(_G2852) ? creep
Call: (7) at_datbar(_G2852) ? creep
Exit: (7) at_datbar(mathias) ? creep
Call: (7) not_completely_hammered(mathias) ? creep
Fail: (7) not_completely_hammered(mathias) ? creep
Redo: (7) at_datbar(_G2852) ? creep
Exit: (7) at_datbar(christian) ? creep
Call: (7) not_completely_hammered(christian) ? creep
Fail: (7) not_completely_hammered(christian) ? creep
Redo: (7) at_datbar(_G2852) ? creep
Exit: (7) at_datbar(thor) ? creep
Call: (7) not_completely_hammered(thor) ? creep
Exit: (7) not_completely_hammered(thor) ? creep
Exit: (6) happy(thor) ? creep

X = thor.

Cuts

Sometimes we (as logic programmers) know more than what Prolog is able to infer. For instance
if there is only 1 correct binding of variables that cause a clause to succeed. Take for instance the
following implementation of the max function.

max(A, B, B) :- B >= A.
max(A, B, A) :- A > B.

which is certainly correct, but is inefficient. This can be seen in the context of the following
knowledge base.

f(X) :- max(X, 20, X), p(X).
p(31).

That is, f(X) is true iff X is greather than or equal to 20, and p(X) is true. Tracing f(20) we see

3

[trace] 1 ?- f(20).
Call: (6) f(20) ? creep
Call: (7) max(20, 20, 20) ? creep
Call: (8) 20>=20 ? creep
Exit: (8) 20>=20 ? creep
Exit: (7) max(20, 20, 20) ? creep
Call: (7) p(20) ? creep
Fail: (7) p(20) ? creep
Redo: (7) max(20, 20, 20) ? creep
Call: (8) 20>20 ? creep
Fail: (8) 20>20 ? creep
Fail: (7) max(20, 20, 20) ? creep
Fail: (6) f(20) ? creep

false.

Notice the Redo? That’s Prolog trying to find another way of satisfying max(X, 20, X), by
trying the other clause A > B. But we know that this cannot be satisfied, since B >= A already
succeeded!

Thus we need a way to tell Prolog that it should not try other clauses once the first succeeds.
The !/0 (cut) goal does exactly that. It always succeeds, and it tells Prolog to never try alternatives
for the current goal. Rewriting max as

max(A, B, B) :- B >= A, !.
max(A, B, A) :- A > B.

and tracing f(20) again we see

[trace] 1 ?- f(20).
Call: (6) f(20) ? creep
Call: (7) max(20, 20, 20) ? creep
Call: (8) 20>=20 ? creep
Exit: (8) 20>=20 ? creep
Exit: (7) max(20, 20, 20) ? creep
Call: (7) p(20) ? creep
Fail: (7) p(20) ? creep
Fail: (6) f(20) ? creep

false.

which is a large performance gain!

Negation as failure
Let’s say Vincent likes burgers.

likes(vincent,X) :- burger(X)

That is, vincent likes X iff X is a burger. But what if Vincent really dislikes Big Kahuna burgers?
We need to specify that vincent likes burgers that are not from Big Kahuna Burgers. Let’s use our
new cut goal can help us here, combined with fail/0, which always fails the current goal.

likes(vincent,X) :- big_kahuna_burger(X),!,fail.
likes(vincent,X) :- burger(X)

4

Since Prolog examine the rules from top to bottom, we always hit the rule containing big_kahuna_burger(X)
first. In that case we prevent Prolog from trying any other choices for X, and force it to fail with
this choice. In other words, Prolog will always fail likes(vincent,X) if big_kahuna_burger(X) is
satisfied. Perfect!

Let’s encapsulate this pattern in a rule, called neg (for negation duh!)

neg(Goal) :- Goal, !, fail.
neg(Goal).

and we can now write likes/2 as

likes(vincent,X) :- burger(X), neg(big_kahuna_burger(X)).

5

